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1. INTRODUCTION

Perturbation methods have been very successful in accurately predicting dynamical motion
for weakly non-linear systems in the form

xK#x"eg (x, xR ), (1)

where e is a small positive parameter and g is a polynomial function of its arguments.
A number of methods are applicable in seeking approximate steady state, periodic solutions
to equation (1). These include the methods of harmonic balance (HB) [1], Lindstedt}
PoincareH (LP) [2], Krylov}Bogolioubov}Mitropolski (KBM) [3], averaging [4] and
multiple scales (MS) [1]. In the former two methods, one seeks directly a periodic steady
state solution, which is assumed a priori to occur. On the other hand, the latter three
methods yield a set of "rst order di!erential equations which describe the slow time
evolution of the amplitude and phase of the response. The periodic steady state solution is
obtained by setting these amplitude and phase time derivatives to zero. The advantage of
these latter methods is that they allow one in a single analysis to study both the steady state
responses and their stability. All these methods are now considered to be classical standard
tools for the analytical investigations of weakly non-linear systems.

The extension to strongly non-linear systems, where the unperturbed system is already
non-linear, has not received the same attention for at least two reasons [5]. First, analytical
solutions for non-linear systems are generally unknown, so that an analytical investigation
cannot be carried out. Second, the perturbation schemes themselves become much more
di$cult to implement.

However, Mickens and Oyedeji [6] investigated a class of non-linear oscillator with the
equation

xK#x3"eg (x, xR ) (2)

by using the HB method and the slowly varying amplitude and phase method with circular
functions. Following this technique, Yuste and Bejarano [7] also investigated equation
(2) but adopted Jacobian elliptic functions instead of circular ones. The accuracy of
the elliptic functions method is obviously higher than that of the circular functions method.
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Recently, some researchers have presented several techniques for the more general case of
the form

xK#c
1
x#c

2
x3"eg (k, x, xR ), (3)

where c
1
, c

2
are constants and k is a control parameter. For instance, Margallo et al. [8, 9]

presented an elliptic HB method using generalized Fourier series and elliptic functions.
Yuste and Bejarano [10] developed an elliptic KBM method and Coppola and Rand [11]
used symbolic computation to implement an averaging method with elliptic functions. All
the methods mentioned above have their own advantages to obtain approximate analytical
solutions. However, most of them were only implemented to give "rst order approximate
solutions. To obtain a second order approximation, Coppola [5] formulated an averaging
method using the Lie transform method. In a series of papers, Chen and Cheung [12}14]
performed an elliptic LP method and derived an elliptic perturbation method based on
expanding the amplitude in a power series of e.

Recently, the elliptic LP and averaging methods were conducted, respectively, by Belhaq
et al. [15] and Belhaq and Lakrad [16] to derive a criterion of homoclinic bifurcation to an
autonomous planar system aiming on the collision of the approximate periodic orbit with
the saddle instead of considering as usual, the distance between the separatrix. The elliptic
HB were also used to study mixed parity non-linear oscillators [17].

In this paper, we formulate the multiple scales method for studying the oscillators of type
(3), in which the Jacobian elliptic functions are employed instead of the usual circular
functions.

2. THE ELLIPTIC MULTIPLE SCALES METHOD

Consider the strongly non-linear oscillator (3), the solution and the operation of time
di!erentiation of this equation are expressed in a power series of e:

x(t; e)"
=
+

m/0

emx
m
(t), (4)

d

dt
"

=
+

m/0

emD
m
. (5)

where D
m
"L/L¹

m
and ¹

m
"emt. Here ¹

m
are independent scales of time which get slower

and slower as m increases. Thus, ¹
0
"q is a fast time scale on which the main oscillatory

behaviour occurs and ¹
i
"eiq are slow time scales characterizing modulations of

amplitudes and phases.
Expanding the function g(k, x, xR ) in power series of e as follows

g (k, x, xR )"
=
+

m/0

emg
m
(k, ¹

0
, ¹

1
,2), (6)

substituting equations (4)}(6) into equation (3), and equating coe$cients of like powers of e,
lead to the following equations

f order O(e0):

D2
0
x
0
#c

1
x
0
#c

2
x3
0
"0, (7)
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f order O(e1):

D2
0
x
1
#c

1
x
1
#3c

2
x2
0
x
1
"!2D

0
D

1
x
0
#g

0
(k, x

0
, D

0
x
0
), (8)

f order O(ei):

D2
0
x
i
#c

1
x
i
#3c

2
x2
0
x
i
"!2D

0
D

i
x
0
#G

i~1
(k, g

i~1
), (9)

where G
i~1

depends on g
i~1

and all solutions and derivatives previous to order i. Equation
(7) has an exact analytical solution which can be expressed by Jacobian elliptic functions in
the form

x
0
"A(¹

1
, ¹

2
,2,¹

i
)ep(u¹

0
#/(¹

1
, ¹

2
,2,¹

i
),k2). (10)

Here ep (. ,k2) is one convenient Jacobian elliptic function (i.e. (sn, cn) or (dn)) with modulus
k; the quantities A, u and / are respectively the amplitude, the frequency and the phase.
A survey of elliptic function properties is given in Appendix A.

Let the prime denote the derivatives of elliptic function with respect to its argument
u"u¹

0
#/ (¹

1
, ¹

2
,2,¹

i
). For a given (ep), (ep)A can be written as

(ep)A"[a(k)(ep)#b(k)(ep)3]. (11)

Here a (k) and b(k) are functions of the modulus k.
On the other hand, (ep)@ can be written as

(ep)@"c(k)(ep
1
) (ep

2
), (12)

where c(k) is a function of k, and (ep
1
) and (ep

2
) are other two elliptic functions which are

di!erent from (ep) (e.g., if ep"dn, then c (k)"!k2, ep
1
"sn and ep

2
"cn).

The frequency u and the modulus k are hence expressed as functions of A, c
1

and c
2
:

u2"!

c
1

a (k)
, (13)

b(k)

a(k)
"

c
2

c
1

A2. (14)

Equation (8) can be rewritten as follows

u2xA
1
#c

1
x
1
#3c

2
x2
0
x
1
"!2u(D

1
A) ) ep@ (u, k2)!2uA(D

1
/)epA(u, k2)

#g
0
(k, x

0
, x@

0
). (15)

It is worth noting that the homogeneous equation of (8) has x@
0

as a solution. Multiplying
both sides of equation (15) by x@

0
and then integrating the equation, we obtain

[u2 (x@
0
)x@

1
!x

1
) xA

0
)]q

0
#P

q

0

x
1
[u2x@@@

0
#c

1
x@
0
#3c

2
x2
0
x@
0
] du

"P
q

0

[!2u (D
1
x@
0
)#g

0
(x

0
, x@

0
, k)]x@

0
du (16)
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Di!erentiating equation (7) with respect to u leads to

u2x@@@
0
#c

1
x@
0
#3c

2
x2
0
x@
0
"0. (17)

Note that x
0
is a periodic function with period ¹ (¹ is 4K[k] for sn and cn or 2K[k] for dn,

K[k] is the "rst kind complete elliptic integral). The functions x@
0

and xA
0

are also periodic
functions with the period 4K[k].

Assume that x
1
is also a periodic function with the period 4K[k]. Then letting q"4K[k]

in equation (16) gives

P
4K*k+

0

[!2u(D
1
A) ) ep@ (u, k2)!2uA(D

1
/) ) epA (u, k2)

#g
0
(x

0
, x@

0
, k)] ) x@

0
du"0. (18)

Due to the oddness of the term related to the modulation of the phase and the necessary
condition for having a periodic solution, i.e., the vanishing of the amplitude modulation
(D

1
A)"0, equation (18) becomes

P
4K*k+

0

g
0
(x

0
, x@

0
, k) )x@

0
du"0, (19)

which is the periodicity condition in the case where equation (19) has a non-zero solution.
This condition arises in a mathematically rigorous way from Melnilov's approach for
bifurcation of periodic or homoclinic orbits. Thus, a particular solution of equation (16)
with initial conditions x@

0
(0)"0, x

1
(0)"0, x@

1
(0)"0, respectively can be expressed as

x
1
(u)"x@

0
(u) P

u

0

1

u2x@2
0

(p
1
) GP

p1

0

x@
0
[!2u(D

1
A) ) ep@(u, k2)

#g
0
(x

0
, x@

0
, k)!2u(D

1
/)xA

0
] dp

2Hdp
1
. (20)

Secular terms are produced by xA
0

in the bracket on the right-hand side of equation (20).
Indeed, integrating the last term of equation (20) leads to

x@
0
(u) P

u

0

1

x@2
0

(p
1
) CP

p1

0

2(D
1
/)

u
x@
0
xA
0
dp

2Ddp
1
"

(D
1
/)

u
x@
0
(u)u. (21)

Here the term x@
0
u tends to in"nity as uPR. However, in order that equation (4) remains

a uniformly valid expansion, x
1
/x

0
should be bounded for all u. To kill secular terms, (D

1
/)

is chosen to eliminate the coe$cient of xA
0

in the bracket on the right-hand side of equation
(20). In the present case, where g (k, x

0
, x@

0
) does not contain the term xA

0
explicitly or

implicitly, secular terms force one to choose (D
1
/)"0. Therefore, equation (20) becomes
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1
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This expression of x
1
is the same as the one given by the elliptic LP method [14]. For details

for calculating x
1

in the case of the oscillator (3) see reference [14].
Taking into account the assumption that the scales of time are independent, the

modulation equations of amplitude and phase are given by

(D
1
A)"

:4K*k+
0

g
0
(k, x

0
, x@

0
) )x@

0
du

2u:4K*k+
0

(ep@) )x@
0
du

, (23)
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0
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0
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0
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0
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0
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0
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0
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. (24)

Equation (9) can be written as

u2xA
i
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1
x
i
#3c

2
x2
0
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i
"!2u(D

i
A) ) ep@ (u, k2)!2u(D

i
/)xA

0
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), (25)

A particular solution of equation (25) is given by

x
i
"x@

0P
1

u2x@2
0
GPx@

0
[G

i~1
(k, g

i~1
)] duHdu. (26)

Hence, one obtains the modulation equations of amplitude A and phase / with respect to
the time scale ¹

i
:

(D
i
A)"
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0
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) )x@
0
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0

(ep@) ) x@
0
du

, (27)
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0
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0
) x

0
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. (28)

3. CONCLUSION

The proposed multiple scales method using Jacobi elliptic functions o!ers the following
advantages. It provides the second approximate term x

1
to correct the approximation x

0
, in

agreement with the LP method [14]. It gives also the modulation equations of amplitude
and phase, in agreement with the elliptic KBM method [10]. Finally, it o!ers the possibility
for deriving higher order approximations in an interactive way.
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APPENDIX A

For the convenience of readers, we collect some facts on Jacobian elliptic functions [18].
Jacobian elliptic functions are doubly periodic functions de"ned over the complex plane.
They satisfy algebraic relations which are analogous to those for trigonometric functions.
The fundamental three elliptic functions are cn(u, k), sn(u, k) and dn(u, k). Each of the
elliptic functions depends on the square of the modulus k as well as the argument u. Note
that the elliptic functions sn and cn may be thought of as generalizations of sin and cos
where their period depends on the modulus k.
TABLE 1

Properties of Jacobi elliptic functions

Property sn () , k) sin( ) ) cn () , k) cos( ) ) dn () , k)

Max. value 1 1 1 1 1
Min. value !1 !1 !1 !1 J1!k2
Period 4K(k) 2n 4K(k) 2n 2K(k)
Parity odd odd even even even
df/du cn )dn cos !sn )dn !sin !k2 ) sn ) cn
f
k
"0 sin sin cos cos 1
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The elliptic functions satisfy the following identities, which are analogous to
sin2#cos2"1:

sn2#cn2"1,

k2sn2#dn2"1, (A.1)

1!k2#k2cn2"dn2.

Only two of these three relations are algebraically independent. In Table 1, additional
properties of Jacobi elliptic functions are summarized.

Here K(k) is the complete elliptic integral of the "rst kind,

K(0)"n/2, K(1)"#R. (A.2)

The complete elliptic integral of the second kind is denoted by E(k). When k increases from
0 to 1, then E(k) decreases from n/2 to 1.
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